Comparative study of clustering techniques for real-time dynamic model reduction

نویسندگان

  • Emilie Purvine
  • Eduardo Cotilla Sanchez
  • Mahantesh Halappanavar
  • Zhenyu Huang
  • Guang Lin
  • Shuai Lu
  • Shaobu Wang
چکیده

Dynamic model reduction in power systems is necessary for improving computational efficiency. Traditional model reduction using linearized models or offline analysis would not be adequate to capture power system dynamic behaviors, especially the new mix of intermittent generation and intelligent consumption makes the power system more dynamic and non-linear. Realtime dynamic model reduction emerges as an important need. This paper explores the use of clustering techniques to analyze real-time phasor measurements to determine generator groups and representative generators for dynamic model reduction. Two clustering techniques – graph clustering and evolutionary clustering – are studied in this paper. Various implementations of these techniques are compared and also compared with a previously developed Singular Value Decomposition (SVD)-based dynamic model reduction approach. Various methods exhibit different levels of accuracy when comparing the reduced model simulation against the original model. But some of them are consistently accurate. From this comparative perspective, this paper provides a good reference point for practical implementations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Studies of Clustering Techniques for Real-Time Dynamic Model Reduction

Dynamic model reduction in power systems is necessary for improving computational efficiency. Traditional model reduction using linearized models or offline analysis would not be adequate to capture power system dynamic behaviors, especially the new mix of intermittent generation and intelligent consumption makes the power system more dynamic and non-linear. Realtime dynamic model reduction eme...

متن کامل

Solving a Stochastic Cellular Manufacturing Model by Using Genetic Algorithms

This paper presents a mathematical model for designing cellular manufacturing systems (CMSs) solved by genetic algorithms. This model assumes a dynamic production, a stochastic demand, routing flexibility, and machine flexibility. CMS is an application of group technology (GT) for clustering parts and machines by means of their operational and / or apparent form similarity in different aspects ...

متن کامل

An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering

Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...

متن کامل

Real Time Dynamic Simulation of Power System Using Multiple Microcomputers

Recent developments in the design and manufacture of microcomputers together with improved simulation techniques make it possible to achieve the speed and accuracy required for the dynamic simulation of power systems in real time. This paper presents some experimental results and outlines new ideas on hardware architecture, mathematical algorithms and software development for this purpose. The ...

متن کامل

HIERARCHICAL DATA CLUSTERING MODEL FOR ANALYZING PASSENGERS’ TRIP IN HIGHWAYS

One of the most important issues in urban planning is developing sustainable public transportation. The basic condition for this purpose is analyzing current condition especially based on data. Data mining is a set of new techniques that are beyond statistical data analyzing. Clustering techniques is a subset of it that one of it’s techniques used for analyzing passengers’ trip. The result of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistical Analysis and Data Mining

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017